Ponimban Fourier

Mantad testwiki

Sinimakan di imported>AnderGapoh ontok 10:35, 8 Madas 2024 maya {{GENDER

imported>AnderGapoh|imported>AnderGapoh}} (Sukuon)
(pisuai) ← Sinimakan nakalaid | Sinimakan poinwagu (pisuai) | Sinimakan kawawagu → (pisuai)
Pergi ke pandu arah Pergi ke carian


Ponimban Fourier nopo nga' iso ponimban donsompuu (integral transform) it ogumu kopio ampos toi kounalan id mogikaakawo gana' lobi po id pongumbangan pandu dontuntuu (digital signal processing).

Ponimban diti poposimban do pandu mantad raung hiza (time domain) kumaa raung sinaru (frequency domain).

Pongomoi

Montok iso pampos s(t) ii kotuluk do nunung Dirichlet (Dirichlet conditions), ii sinimban Fourier nopo dau nga' s^(f) om ponimban Fourier do :ss^ tu' osimban no raung hingkaa tf. Id siriba no ii govit pongomoi do ponimban Fourier:

(s(t)):=s^(f)=+s(t)e2πjtdt

om ponimban sambalik dau nopo, 1

1(s^(f)):=s(t)=+s^(f)e2πjfdf

It ponimban Fourier nopo okito saagal do koromigan do rayat Fourier, id saau nopo it govit do koponutunan (representation) isoiso pampos id ngaan di tongo pamagat Fourier, cn.

f(x)=n=cnexp(2πinx/p) ontokx[P2,P2]

Soroho andasan gia di vaza pongomoi[1] ii pampos f(x) nopo nga' pampos osompuu don Riemann (Riemann-integrable) om pampos osikap kumuri. Id sinalom diti komoon do pampos osikap kumuri nopo nga' nunu f(x): ii kotuluk:

limnf(n)(x)=0 ngain

Bahazan

Ingkaa no bahazan[2] timpou do ponimban Fourier kaanu popouhan do pongihiman ponimban Fourier do nunu pampos tosudong:

Tinulid (Linearity)

as(t)+bm(t)    as^(ω)+bm^(ω);a,b

Insir hiza (Time shifting)

s(tt0)    ei2πt0ω s^(ω); t0

Insir sinaru (Frequency shifting)

ei2πω0ts(t)    s^(ωω0); ω0

Panganatan hiza (Time scaling)

s(at)    1|a|s^(ωa); a0 Pinili a=1 pakayaan doid bahazan pomolik hiza: s(t)    s^(ω)

Sukuon